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Moment Theory of lon-Neutral Reactions in Traps and Similar Devices
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Recent moment theories of ion motion in traps and similar devices are extended to mixtures of neutral gases
in which one or more components can undergo infrequent reaction with the ion of interest. Expressions are
developed for the position and time dependence of the ion-neutral reaction rate coefficient in such circumstances.
These expressions are incorporated into the sets of coupled differential equations that govern the average ion
velocity and kinetic and internal energies. This provides a consistent description of the ion transport and
reaction coefficients.

1. Introduction Maxwell model, where the particles interact as a point-charge

Gas-phase ionmolecule reactions are of considerable inter- lon and a neutral with an induced dipole. Wannier's expression

est, from both applied and fundamental standpoints, because

they are important processes in areas such as mass spectrometry, 1.

atmospheric chemistry, and combustion. Consequently, numer- Ejon = 2kBT +5meg +5Meg 3)

ous reactions of this type have been investigated and their

reaction rate data compiléd® For atomic ion reactions with where the first term is the thermal energy, the second is the
atomic neutrals, the true thermal reaction rate coefficient, energy that the ions have gained from the electrostatic field and
kg))(T), as a function of temperatur&, is obtained by averag-  are exhibiting as motion along that field, and the third is the
ing the integral reaction cross-sectidpg, over a Maxwellian field energy that has been transformed into random motion due

distribution of relative reactant energieB. When Qf is to collisions with the neutral particles. .
normalized so that it is equal ted? for the reaction of rigid Transforming eq 3 into the center-of-mass for an ion-neutral
spheres of diametat, the textbook expressidiis collision then yields the average collision energy,
B v ., Eel -, [Eqy0= kT + M2 (4)
kR (T) kBT U kBT ,/(‘) EreI ex kBT Q (Erel) dErel 2 2
reactant molecules (with maddg) are added to the buffer
@ lecules (with magd dded to the buff

gas at a number density low enough thatHoeactant encoun-
’ters are relatively rare events, thee(ffor the ion—molecule
reaction is given by the equatibn

whereur is the reduced mass of the ion and neutral reactants
ks is Boltzmann’s constant, and the superscript O is used as a
reminder of the assumption of a nearly Maxwellian distribution.
Because the relative kinetic energy is equal ¥)KsT for m-+ Mg

thermal collisions, eq 1 may be written in the alternative form, [E,[F 2kBT + ( ey )(ZMRud) ZkBT(em (5)

8kg eff) - : -

(0) Here T¢M is the effective temperature characterizing the
exp( d 2 R p g

(M= ( ) L PEPIRE Dty () relative reactant energ¥f..[) but it has no direct relationship

to the distribution functions of the ions or neutrals.

Although it is often of interest to acquire high-temperature,  Although rigorously correct only for the Maxwell model of
thermal rate coefficients for isrmolecule reactions, raising the  constant collision frequencies, eqs3 have been showirto
operating temperature of typical apparatus abe@0 K by be correct within 10% for virtually all atomic ieratom systems.
conventional heating methods is problematic. Alternatively, it For an apparatus in which the electric fiell, and the buffer
is possible to increase the temperature above that limit (andgas number density\, are constant, it is straightforward to
have more flexibility below it) by electric field acceleration of  determinewvy, and thus'l'(sff)_ The above suggests, therefore,
the ions. Suppose that we are concerned with atomic ionsthat the reaction rate coefficient measured under such conditions,
drifting through a dilute atomic gas under the influence of a kg(T,E/N), should be nearly identical with the thermal rate
uniform, electrostatic field of arbitrary strength. For this coefficient determined af&™, viz.,
situation, the mean kinetic energ¥ionlJ) for ions of massm,

rl\r/lmvmg at veloqltyyd, through an |r!ert. buffer gas having mass, - 8kB eff)\ 1/2 3 »

, was determined from basic principles by Wanhier the KO(TEM) = j(; expyA)QL(y ks TEM)y2 dy
*To whom correspondence should be addressed. E-mail: (6)

vief ?QSEE’;Q%“O?Q;E‘“' Consequently, several techniques, such as drift tBibelsift
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apparatus (SIDAY! 12 flow tubes!314etc.15 have been used to  nonreactive and is composed of a mixture of atomic gases. On

investigate ior-molecule reactions as a function of electric field a microscopic level, collisions between the ions of interest and

strength (or more correctly, the rati&/N). neutral atoms of specigsare described by the integral cross-
Although the velocity distribution of reactant (and buffer gas) section for reactionQ’, and the differential cross-section for

neutrals is Maxwellian for the thermal techniques, a difficulty elastic scatteringg;. Both cross-sections are functions of the

arises ifkr(T,E/N) is construed as a thermal rate coefficient: relative kinetic energy,

the actual velocity distribution of the reactant ions is not known,

but it is certainly not Maxwellian. That i§EionJand therTs"” U 5

determined from a measured value are approximations and, = E'V — Vil (8)
even if they are accurate, any number of distribution functions

besides a Maxwellian can have the same and [Eionl] in the center-of-mass frame of the colliding particles, ais

Additional complications arise if polyatomic ions are involved  gjso a function of the scattering solid angiy,= {6, ¢} . Here
because collisions with the buffer gas atoms increase the internal

energy of these molecular ions. Thus, the ion internal temper- mM
ature, Tinr, and the corresponding internal state distribution Y= ey 9)
function, must then be considered. For situations involving i

molecular neutrals as well, their internal state distribution also ] ] o

has to be taken into account. General moment theories, baseds the reduced mass for the ion of maswith velocity v in the

on transformation of the Boltzmann equation, have been laboratory frame of reference and the neutral of spejcveith
developed for the situations described above, initially for the MassM; and velocityV;. . .

reaction of atomic ions and atomic gases in electrostatic fi€lds, ~ Macroscopic properties of the ion motion through the gas
and later for drift tube reactions of polyatomic specidhese ~ Mixture can always be expressed in terms of moments with
theories indicate that iermolecule reaction rate coefficients, ~'eSpect to the ion distribution functiofy, that is a function of
ke(T,E/N), measured as a function of gas temperature and the time,t, the ion positiony, {;mdv. qu thg circumstances
electric field strength are indeed equivalent to thermal rate described abqve,ﬁthe distribution function is governed by the
coefficients, KO(TEM). The difficulty is therefore conceptual ~ following versiort® of the Boltzmann equation:

and not real.

The situation i§ even more complicated for the reaction of E—I—v-V—i-EE(r DV + z fF-(V-)Q-*(e-)
trace amounts of ions in dilute neutral gases when the charged| gt m 'L RO
particles are under the influence of external fields that vary with
time and with position in the apparatifs'® In five recent f(r,v,t) = Z FH(rv,t) (20)
papers-®~23we developed general theories for ion motion under ]
such conditions and applied them to field-asymmetric ion
mobility spectrometers and three-dimensional quadrupole ion Here g is the ion chargeE(r t) is the external electric field
traps. The purposes of this paper are to derive expressions foWhose dependences upon position and time are assumed to be
the ion velocity distribution function and the rate coefficients known, the center dot-X indicates the scalar product of the
for ion-neutral reactions and to obtain the moment equations two vectors surrounding it, and the quantitiet(), vV andV,
that describe the average ion velocity and energy in a gasare gradient operators in time, position, and velocity space,
mixture. To this end, we consider in Section 2 the two- respectively. The nonreactive Boltzmann operator on the right-
temperature (2T) and multitemperature (MT) moment theBties hand side of eq 10 is defined by the expression
for atomic ions and neutrals. In Section 3, we consider the
spherical-basis (SB) and Cartesian-basis (CB) moment th&ories FH(rv,t) = f [f(r V' DF. (V) — f(r,v,H)F. (V)] x
for molecular ions and neutrals. Applications of our results are . o o
given in Section 4 and a discussion in Section 5. v = VJ"“J('E]’HJ) sm(@l-) dej dd’i dVJ (11)

As noted earlier, we are concerned with experiments in which
reactive ion-neutral encounters are infrequent, either becausevhere the primes represent postcollision velocities that are
the neutral gas consists of a small amount of a reactive gasconnected to their precollision (unprimed) counterparts by
immersed in a large amount of a nonreactive, buffer gas, or conservation of energy and linear momentum and by the details
because most of the potentially reactive collisions are actually of the ion-neutral interaction potential that govemé;,0;).
unreactive for mechanistic or energetic reasons. W lehd Finally, the distribution functions for the neutrals at gas
N; be the mole fraction and number density of gaso that the ~ temperaturel have the equilibrium, Maxwellian form,
total number density of the gas is

oM A%
N = Jz X]-NJ- (7) FJ(V) = Nj 2.7'[—|(B-|- exp — ﬂ (12)

Rather than solving eq 10 and then throwing away much of
the hard-won information by integrating to calculate the desired
homents, the essential feature of our previous Woik to
transform the Boltzmann equation into moment equations, i.e.,
a set of partial differential equations that governs directly the
moments of interest. There are only two differences between
eq 10 and the Boltzmann equation used previoifsTihe first

In this section, we consider trace amounts of an atomic ion is that the right-hand side involves a sum of collision terms
moving through a dilute neutral gas that is predominantly involving each of the neutral gases. The other, more significant

X

v—V]-‘ dVJ-

Because only trace amounts of ions are used;ion collisions

can be neglected, and we need consider here only one particulal
ion species. For simplicity, we will also restrict our attention
to situations where the only external fields are electrical.

2. Atomic Systems
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difference is that there is a reactive term on the left-hand side. Here S(Qllz(vvz) is a Sonine (associated Laguerre) polyno-

Because reactions are assumed to be infrequent, this term camial of the square of the magnitude\W, Y"(W) is a spherical
be dropped in all situations where the nonreactive term does harmonic of the angles a¥, andTio(r t) is the ion temperature.
not vanish. This means that the reactive term is not dropped Because the ions are present only in trace amoumisy t)
when the equation of continuity is obtained by integrating the can be substantially larger thanit is determined by constrain-
Boltzmann equation over all velocities. We thus obtain the rate jng the solution of the moment equations that givedhe(r t)

equation of continuity, so that
D) + V(v ) = —nr YN Krt)  (13) [ i v 5me?] v
o s Tonr) = 2 (21)
2 B "ion\"» n(r,t)

where the ion number density is
Note how the position and time dependencd{@i(r,v.t) and

n(r.t) = ff(r v,t) dv (14) Imr(r V,t) arise indirectly through their dependences upon
’ Y Tion(r ,t); in paper I1° these dependences were left implicit.
the average ion velocity is Equation 1-28° indicates that we must have
Chodr ) = (4n)™ (22)
Jfrvhvav . A :
rp)=-—r-r—mo— (15) in order for the zero-order distribution function to be properly
n(r,t) normalized. For the moments of the ion velocity (i.e., eq 15) to

) S be correct, we must have
and the two-body reaction rate coefficient is

1/2—
fr 0] [FV) eiir =2{3) Wiy @9
K(r,t) = 4j“j{ —|Q(g)Iv — V|l dV, dv 2\L2 — -
2 6 D=~ (3] Wen+iwey (@4
The dependence #&r,t) upon position and time, like that of and
the ion velocity distribution function, arises because the ion @7 _ [2m\V2,— v
energy depends upon the strengths of the external fields that 10t = (?) (W(r.) — I W(r. D)) (25)

act upon the ions, and these fields may be position- or time-
dependent. In eq 16, we have left implicit the dependence uponwhere theW(r .t) are velocity averages of the Cartesian
the gas temperatur&, and we have assumed the reaction cross- components of eq 20 far= x,y,z. Finally, we find that in order
section, Q', is provided from some experiment or theory to satisfy eq 21, it is necessary that
outside of the present work, as a functionepf
i i i ciourH=0 (26)

To change eq 10 into equations governing moments of the 0,0,

ion velocity distribution function, we start with eq 1-17, i.e.,

with eq 17 of the first pape¥? In first approximation, all of the other expansion coefficients

in eq 17 are equal to zero. When eqs-2% are combined with
the explicit expressions for the corresponding basis functions,

f(r,v.0) = n(r.Oio(r,v.1) Z G ma(T W me(FV-1) - (17) then the first approximation to eq 17 becomes

I,mn

This equation indicates that the distribution function has been f(r.v.t) = n(r Hfs"(r,v,0[1 + 2 z W, WrOW(rv,h] (27)
expanded in terms of(r ,t), a zero-order approximation function,

fo(r,v,t), and a set of basis functionBma(r,v,t). A series of  This equation is deceptively simple because the dependences
systematic approximations for obtaining the expansion coef- uponr andt occur throughTion(r,t) While both Tien(r,t) and
ficients, o mn(r ,t), with increasing accuracy has been described W(r 1) must be obtained b | diff |

s y solving differential equations, as
previously® The convergence of this series depends upon the shown below.

particular choices made, and these in turn depend. upon the By making use of eqs 12, 17, 18, and 27, eq 16 can be written
symmetry and other properties of the experiment of interest. . T
in first approximation as

2.1. Two-Temperature Theory. The 2T theory uses the
choices M. 372 312

SEEEDY : i
f EJZT)(I’ ,V,t) = (m)gl2 exp(—VVz) (18) I 2‘7-[kBT 27T|:B-|—ion(r ,t)
MV mo?

and f f 2kBT 2K Tion(r, t)

(Zﬂ — —
rv,t)=Ww WA Y (W 19 m \v2
Wi v.0) = WS W) YT(W) (19) s 2( ) S W I~ VO 6) v,
where K Tion(r,t)) @ o8
W(rv,t) = (—)1/2 (20) If the ion and neutral temperatures were the same, we could
2Kg Tion(r 1) simplify eq 28 by introducing the relative and center-of-mass
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velocities. To get a simple term in the exponent, however, we

must here introduce the new vectors

mT+ M. Tlon(r D]Y2mTv + M, Tlon(r t)V

J. Phys. Chem. A, Vol. 111, No. 15, 2002823

9—
=V

_9g COT Vv —
Y~ B+ EN (T v =0 (35)

where the time- and position-dependenceélgf has been left

x= kg TTion(F 1) mT+ M, T () (29) implicit. The total momentum transfer collision frequency is a
linear combination of those for each gas, i.e.,
and I7a)) (2T)
mM 172 g (Tion) = z ng (Tlon) (36)
Y= ’ ] v=V) (30)
2ke{MT+ M T, (r 0} where

In terms of these vectors, whose time- and position-dependences

eff) 12
have been left implicit, eq 28 can be written as sN_ M (ZkBT( (r.0)

(2T) — O\ O L,1)1eff)
e Tod =3 | g ) 000
2k TE(r ) (37)

S [ expy? =) x

KED(r t) = Z X|—————

andQ@Dis the momentum-transfer collision integ?zBecause
there is a different effective temperatur'é )(r b), for each

_ 12
gasj, the first approximation moment equation for the kinetic
1+2 zwu(r ,t)[ T MT (D 0 Xut energy of the ion swarm must be left as a differential equation
! ] 7iom" for Tion rather than, as in paperfd,converted to a differential
MjTion(r,t) 1z 2 T equation for the effective temperature. This moment equation
———| Yot |YQ (ks T(r b)) dy dy (31) is
mT+MTo(r)) )| :
_ 2me@D(T
where the effective temperature is E - EE Wt Z M -T]1=0
ot " 3Ky mam [
J j
mT+ MiTi(r.0 (38)

T ) = (32)

m+ M, o ) " )
and after it is solved, the varloa§e )(r,t) can be obtained by
using eq 32. This completes the first approximation of the 2T
theory, which will be discussed further in Section 4.
2.2. Multitemperature Theory. The MT theory for atomic

ions and neutrals uses the choices

The integration ovey is easy, giving

2k TE(r 1) 2
K2T(r t) = le z x| ———| [ exp?) x

#
MTin(r) |2 _ — v =[] LI exp(-W)  (39)
1+2—————| T Wrty,| x Ay 2k T (r )
MT+ M;Tiq(r ) T
QT ) dy (33) A
Finally, we can integrate over the anglesyofo get W VL) = H(W)H (W) H (W) (40)
8k, T (r 1) |2 where

k(ZT)(r t) = z X kB— X m 12

T, Wu(r V)= (m) vu(r b (41)

Sy expErAQ 0 ke TE(r 1)y  dy (34)
Here H|(W,) is a Hermite polynomial of thex component of
This has the same form as eq 6 and is the same expression agy. The ion temperatures are determined by constraining the

would have been obtained by using the zero-order distribution | tion of the moment equations for tbﬁ%fn)(r,t) so that
function rather than the first approximation to the ion distribution o

function; the additional terms in first approximation disappear
when computing the reaction rate coefficient.

We now have explicit expressions for the ion velocity
distribution function and the reaction rate coefficient in first
approximation of the 2T theory. However, these expressions
involve the average ion velocity, ion temperature, and effective C(()MOT())(I' H=1 (43)
temperature. To complete the description of the motion of atomic
ions in quadrupole ion traps filled with a mixture of atomic in order for the zero-order distribution function to be properly

gases, we must analyze eq 10 in the same way we analyzechormalized. For eq 15 to be correct, we must have
previously® the Boltzmann equation for a single-component gas.

FeTulr) = [ f(rvp5me] dv 42)

Equation 1-70° indicates that we must have

o . . : - _
Fortunately, this is a straightforward but tedious extension of C(l O())(r 1) = W(r.t) (44)
the same steps, so it suffices here to simply cite the final results.

The differential equation governing the average velocity of the )

ion swarm in first approximation is Co.1,0(rt) = Wi(r.t) (45)



2824 J. Phys. Chem. A, Vol. 111, No. 15, 2007 Viehland et al.

and _ S — ) 2m _
e 9 = W e L D3 vl AT
Finally, we find that in order to satisfy eq 42, it is necessary 2 z XEN (T, T, TN (T, T, T)TE =0 (55)
that ]
SO = c3o(r.H = cuXr.h =0 (47) The dimensionless quantitp! (T, T,,T,) allows energy par-

titioning?* to occur, as described in Appendix A of papefd/.
This completes the first approximation of the MT theory, as
discussed further in Section 4.

All other expansion coefficients are identically equal to zero in
first approximation.

When these explicit results for the expansion coefficients are
comblned Wlth the expllc@ expressions f_or the corresponding 3. Molecular Theories
basis functions, then the first approximation to eq 17 becomes

similar to eq 27: On a microscopic level, collisions between the molecular ions
- of interest and neutral molecules of spegiese described by
(r,v,0) = n(r O (r V.0 + 2 z W, (r HW,(r v,1)] the integral cross-section for reactid@, and the differential
a cross-section for elastic scattering, Both cross-sections are
(48) functions of the relative kinetic energy, in the center-of-mass

frame of the colliding particles, and the precollision internal
statespe andg, of the ion and neutral, respectively. In addition,
oj is also a function of the scattering solid angfg, and the

This means that we can follow the same pattern for determining
the rate coefficient as used previously. The final result is that

1 1/2 postcollision statesy’ andf', of the ion and neutral.
K(rt) == : expl—12 — 12 — 12 x Fpr molecular ions, the_ macroscopic properties of the ion
.9 T Jz % au; ff f PEVe— 1y =72 motion through a gas mixture can always be expressed as
: N 12 moments of the ion distribution function that depends upon the
€ (r.) time, the ion position, the ion velocity in the laboratory frame

Qfk (EJ* ) dy, dy, dy, (49) of reference, and the ion internal state. The distribution function
can, in principle, be obtained by solving the Watghang-

where Uhlenbeck-de Boer (WCUB) equatiof2® which becomes

€(r) = yke TEO(r 1) + ok TS 1) + 2k TE(r .?50

9 q :
UV ECON S Y J APV @Bie) x

and ‘v —V,

mT+ MT,(rt
T = T D (51) - .
) m+ M, when magnetic field terms are ignored. Here we assume that
) ) the cross-sectiorQ*(a,j3; €r), for reaction between an ion in
Equation 49 reduces to the two-temperature expression, eq 34stateo and a neutral molecule in statds provided from some
when the three ion temperaturdg(r t), of the MT theory are  experiment or theory outside of the present work as a function
set equal to the Single ion temperatl]fﬁn(r ,t), of the 2T theory. of the reactive collision energy given by eq 8.

When the previous MT theot§is extended to gas mixtures, The nonreactive WCUB operator on the right-hand side of
the differential equation governing any component of the eq 56 is defined by the expression

average velocity of the ion swarm in first approximation is

de] x fO(rvt) = > ¥ @(r v,b) (56)
]

(a) - @) v VEB) (/! (o)
59— - JEOrvp) = ; [f“r v HFP(V) — 9 vt) x
S B E(TT, T, =0 52) Ay J P
FOWV)T IV = Vlo(aB;a’B'€.60,¢) sin@) do, dg, aV, (57)
where
(MT) _ ™7 where the primes represent postcollision velocities and internal
& (Tx'Ty’Tz) - Z ngu,i (Tx’Ty’Tz) (53) states that are connected to their precollision (unprimed)
! counterparts by conservation of energy, linear momentum, and
and angular momentum, and by the details of the ion-neutral
interaction potential that govermeg(af; o'f'; €,0,,¢;). Finally,
MT 2N M P the distribution functions for the neutrals at gas temperature
EELJ )(Tx'Ty’Tz) T APmEM f f f expeyy — vy have the Maxwel-Boltzmann form,
J
v276 6 D) dy, dy, dy, (54) 2 MV2
Becaus&® is the same momentum-transfer cross-segtioat Z\27kgT 2T kgT
is needed to comput®®1), eq 54 reduces to eq 37 when the
threeTy(r t) are each set equal Mon(r ,t). where
The differential equation governing the average ion energies
in first approximation is a generalization of eq |-88ropping ej(ﬁ)
the magnetic field terms, the first approximation version of this 4= ; exp—— (59)
equation is keT,
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is the partition function for the neutrals of specjeandej(ﬁ) is in order for the zero-order distribution function to be properly

the internal energy when the neutrals are in internal gtate normalized. For the moments of the ion velocity to be correct
There are only two differences between eq 56 and the WCUB in first approximation, we must have

equation used previousk.The first is that the right-hand side y

involves a sum of collision terms involving each of the neutral C(lsgé drp)= 2(4_”)

gases. The other difference is that there is a reactive term on Y 3

the left-hand side. Because reactions are assumed to be

infrequent, this term can be dropped in all situations where the and

nonreactive term does not vanish. This means that the only time & 2m\12 — _

the reactive term is not dropped is when the equation of cohdrt) = — (3) (W(r,t) +TW(r,p))  (68)

continuity is obtained by integrating the Boltzmann equation

Wr ) (67)

over all velocities. We thus obtain the rate equation of continuity, (sB) _[2m\V2,— —
eq 13, where the two-body reaction rate coefficient is Ci1o0dlt) = (3) (W(r,8) — T Wi(r,1)) (69)
f(“)(r AVA)) Fj(ﬁ)(Vj) We note in particular that constraining the kinetic temperature
k(r,t) = Z X Z f f X so that eq 21 holds means that we must have
] a, n(r ,t) N]
Q(aB; €)Iv — V| AV, dv (60) cSordrn=0 (70)

To change eq 56 into equations governing moments of the while constraining the internal ion temperature so that eq 65
ion velocity distribution function, we start with eq IV-15, i.e., applies means that
with eq 15 of paper I\??

POV =nEOf VD S Gl D maolr Vitie®)
I,mn,0 (61)

cSapAr) =0 (72)

These explicit expansion coefficients can be shown to yield
the following first approximation to the reaction rate coefficient

A series of systematic approximations for obtaining the expan- N the SB theory,

sion coefficientse mno(r,t), with increasing accuracy has been —

described previousl§? The convergence of this series depends f(“)(r V1) = n(r tf gSB)(r ,v,t,x(“))[l +2 ZWu(r DWW (r,v.b)]
upon the particular choices made, and these in turn depend upon U (72)
the symmetry and other properties of the experiment of interest.

3.1. Spherical-Basis TheoryThe SB theory uses the choices s is the generalization to molecules of eq 27. Then eq 60

1 m a2 can be analyzed in the same manner as was used for eq 16 in
HSA(RAES (—) expW — X9 (62) the 2T theory. The SB result is identical in form with eq 34,

2\27kgTion(T D with the identification that
and 1 e(a) 6j(/j)
A e)=— ) exg— —— — —|[Q(a.,5;
W) (1 v) = WS AWIVOIR()  (63) V=222 ren ier] S

73

where the only changes from the 2T theory are the introduction (73)
of the dimensionless internal energy There are therefore only two differences between the rate
coefficient for molecular systems in the SB theory and those
@ = @ (64) for atomic systems in the 2T theory. First, the total reaction
K Tinel(r 1) cross-section must be computed by adding (with exponential

weights) the state-specific cross-sections. Second, the presence
the WCU polynomialg225Ry(x®), and the ion partition function ~ of internal states influences the value B§q(r,t) and hence
defined analogously to eq 59. The kinetic temperatGg(r ,t), changes the numerical values of the reaction rate coefficients
of the ions is determined by constraining the solution of the in ways that depend critically upon the experimental conditions
Boltzmann kinetic equation that gives thenno(r,t) so that eq and the particular ion, buffer, and reactive neutral being
21 applies. The internal temperature is similarly determined by considered.
the constraint that When the previous SB thedRjis extended to gas mixtures,
s the differential equation governing any componant{ x,y,2)
_ o o of the average velocity of the ion swarm in first approximation
EkBTint(r’t) o Z f fl )(r,v,t)[e( )] dv (65) has the same form as eqs 35 and 36, but iFon) replaced
by £°®(Tion), @ generalized version of the momentum-transfer
Here the factorg, that measures the number of active internal collision integral that is given by eq V-AS. The moment
degrees of freedom of the ions has the value 2 if the ions are equation for the ion temperature is
linear and a value of 3 or higher for more general molecular

ions. 9 2q - 2m§j(SB)(Ti0n)
In first approximation, only four of the expansion coefficients —T,,, ——FE-v + z X————— [Tign — T] +
in eq 61 are not equal to zero. We must have ot 3Kg ] m+ M

(SB) eff) _
&) (1) = ()1 (66) 23 55T Ton T DT =0 (74)
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The dimensionless quantityj(SB)(Tion,Tim,'l') is the dimension-
less ratio of the collision integral for internal energy transfer to
that for momentum transfer, as described in Appendix A of
paper V23

To complete the first approximation moment equations of
the SB theory, we need the moment equationTigr This is
given by eq V-4 with the quantity® BTy, Tin,, T) given by
summing eq V-A12 over each of the neutral gases in the
mixture. This completes the first approximation of the SB theory,
which will be discussed further in Section 4.

3.2. Cartesian-Basis Theory.The CB theor§? is the
generalization to molecules of the MT theory. It assumes that

f OB vt XY) = Z7 T expEX ) MD(rvt)  (75)
and
Wiano(rvtx?) = WD vORXY)  (76)

Following the same procedure as with the MT theory, we
find that the generalizations of eqs486 are

cSondr =1 (77)
and
S04 =W, ) (78)
cSEhdr D) = W(r ) (79)
chondr ) = Wi(r 1) (80)

All other expansion coefficients are zero in first approximation
of the CB theory, so in this approximation eq 61 becomes

£ O v,t) = n(r Hf B v X1 + 2 > Wu(r HW,(r,v,b)]
’ (81)

which is the generalization of eq 48. Then eq 60 can be analyzedreported previousl
in the same manner as was used for eq 16 in the MT theory.

The CB result is identical in form with eq 49, with the
identification given in eq 73. Again, there are only two

Viehland et al.

To complete the first approximation moment equations of
the CB theory, we need the moment equationTgat This is
given by eq V-4, with the quantit®®(T,,T,,T,,Tin, T) 0b-
tained by summing eq V-All over each of the neutral gases in
the mixture.

4. Applications

We first consider the implications of our first approximation
results for the ion velocity distribution function. We consider a
qguadrupole ion trap containing small amounts of singly charged
atomic ions with massn = 100 g/mol and a larger amount of
neutral atoms with madd = 4 g/mol, temperaturé = 300 K,
pressuré® = 0.001 Torr, and dipole polarizability = 0.2050
A3, We assume that the ion-neutral interactions obey the
Maxwell model of constant collision frequency, which for the
values above i§ = 740.9 s1, and that the 2T theory is adequate
in this situation. We focus on the steady-state condition by
assuming further that initial velocities in each direction have a
Maxwellian distribution with zero average velocity and that the
initial ion temperature is zero. The ion trap is assumed to operate
at a frequency of 1.00 MHz (angular frequer@gr = 27 x
10f s 1), and the magnitudes of the dc and ac fields are such
that the usual trap parameters age= 0 for u = x,y,zandq, =
—20x = —20y = 0.20. We focus specifically on the point in the
trap wherex =y = 0 andz = 0.005 m. The results far, are
shown as a curve in Figure 1 of our previous wétkiecause
of the choices made here, the average ion velocities along the
x andy axes are always zero and there is no exponentially
damped term in the average ion velocity along ztexis. The
results for the collision energyg. = 3ksT*"(r.t)/2, in the
situation just described are plotted in Figure 2 of the previous
paper, and these results can be converted to valugg,@f,t)
using eq 32. Then eq 27 gives the velocity distribution functions
shown in Figure 1.

The graphs show that symmetry around thexis is retained,;
this is a result of our examining a position along the trap axis,
z. They also show that the distribution moves outward, to larger
vz, as time goes on during a small portion of the first cycle of
the RF trapping field. This is consistent with thevalues we
¥ As time increases, the maximum of the
distribution function decreases because it covers a larger range
of v, values. Although the volume under the curve also
appears to decrease as time increases, this is artificial. The

differences between the rate coefficient for molecular systems volume reduction arises because we have used only three

and those for atomic systems in the corresponding theory.

When the previous CB theot3/is extended to gas mixtures,
the differential equation governing any component of the
average velocity of the ion swarm in first approximation has
the same form as eqs 52 and 53, but W@%T)(TX,Ty,TZ)
replaced by&S®(T, Ty, T, Tinu, T), & generalized version of the
momentum-transfer collision integral that is given by eq VZA7.
The moment equation for the ion temperature is

0 2q — ZH]E(jC,:UB)(Tx'Ty’Tz'Tintvn
—T,— —Ey, +

ot Ks JZ s m-+ M,
CB CB )
22 ngj(u )(Tx7Ty!Tz’Tint=T)cDj(,u )(Tx’Ty’Tz’Tian)Tj(i ) = 0
]

[T,— T+

(82)

The dimensionless quanti®{$?(T,,T,, T, Tin, T) includes the

ju

effects of energy partitioning and internal energy transfer, as

described in Appendix A of paper %2.

dimensions rather than four because we know that the trap has
Xx—y symmetry. Hence as the distribution spreads alopgt
also spreads along,, and volume appears to be lost.

The graphs contain regions of negative probability, but they
are too small to be seen on Figure 1. Such unphysical results
arise because the moment method focuses on the bulk of the
distribution function, not the tails. Presumably, higher orders
of approximation would gradually eliminate such regions, but
such considerations are beyond the scope of this paper.

As an application of our results for reaction rate coefficients,
we consider two models for the ion-neutral reaction cross-
section. The first is a constant cross-section,

7I§(Ere|) = ﬂdz (83)
which from eq 6 gives
gk, TeM\ 12
k(TR"™) = (—WR ac (84)
R
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(a) 0.00 microseconds (b) 0.01 microseconds
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Figure 1. Three-dimensional plots of the four-dimensional surface representing the ion velocity distribution function in a quadrupole ion trap at
selected times. The units for the velociities along xrendz directions are ms. Panels a, b, ¢, and d correspond te 0, 0.01, 0.02, and 0.03
us, respectively. The trap parameters and the details of the ion-neutral system are described in the text.

The second is similar to the Reid ramp moéfethe reaction For the Maxwell model, in which the ion-neutral interaction
cross-section is 0 below some valdg while above this value,  varies inversely with the fourth power of the separation between
it is the collision partners, the collision frequency is constant and

the momentum-transfer cross-section varies inversely with the
SEre — Ea square root of the energy. A similar model for the reaction cross-
Qk(Ere) = wd—p— | (85) section is
re
= (87)
(4'7t60)Ere
wheree is the electric constant. The corresponding reaction

the corresponding expression for the reaction rate coefficient is

Q*( Erel) = JTQ( 20. |)1/2

Bk, TEM| 12 E rate coefficient is then
KQ(TE™) = ( ~ ad? exp| - 1; 5l (89 "
b o Tr KI(TEM) = o - (88)
€olr
Plots of the rate coefficients using valued? = 5.0 x 10720 i.e., itis independent oT(,fﬁ) and hence is not shown in Figure

m? andE, = 0.1 eV are given in Figure 2. 2.
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Figure 2. Reactive rate coefficienkg in units of cn¥ mol~t s, as a
function of effective temperature‘l"é’m in K, characterizing the

reactive ion-neutral collisions. The models and their parameters are

described in the text.
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Figure 3. Variation with time.,t, in us, of the effective temperature,
TE in K, characterizing the reactive ion-neutral collisions. The trap

parameters and the details of the ion-neutral system are the same a

for Figure 1.

Because the rate coefficients generally vary with effective
temperature, they will also vary with position and time in a

quadrupole ion trap. Figure 3 shows the calculated time

dependence of €™ over the first two cycles of the trapping

Viehland et al.

110 T T T T T T T T T

Figure 4. Variation with time.t, in us, of the reaction cross-sections,
kr in units of cn¥ mol~ s71, obtained by combining the results shown
in Figures 2 and 3. From top to bottom, the curves represent the
Maxwell, constant, and variable cross sections.

overall reaction rate in the entire trap. Such calculations will
be reported in a future paper.

The calculated rate coefficients can be compared with
absolute rate coefficients determined experimentally in a quad-
rupole ion trap. For the reaction of Bwith CH;l, the measured
reaction rate coefficient in a room-temperature ion #fapas
2.7 x 1071 cm? mol~t s™1. Measurement in a flowing afterglow
apparatu® at 298 K yielded a value of 2.89 10~ cm® mol~?!
s~ L. For reactions of [MgOs(OH)]~ with a series of alcoho®,
experimental measurements in the same instrument gave reaction
rate coefficients ranging from 2.8 10711 to 6.6 x 10710 cm?
mol~*s~1. The theoretical iormolecule collision rates for these
systems, calculated using the ADO method of Su and Bo#ers,
ranged from 1.22 to 1.4& 107° cm® mol~t s71,

5. Discussion

We have extended our recent moment theories for ion motion
in traps and similar electrodynamic devices to include (infre-
guent) ion-neutral reactions in a gas mixture. The new result
We find is that, in first approximation, ienmolecule reaction
rate coefficients measured in traps and similar devices employ-
ing time- and position-dependent electric fields can be equated
to thermal rate coefficients at an elevated temperature. In other
words, rate coefficients appropriate to high temperatures in the
absence of electric fields can be extracted from measurements
at low temperatures and elevated electric field strengths even

RF signal when hard-sphere ion-neutral collisions are assumed hough the velocity distribution of the ions may differ substan-

At the particular trap position used heFéfﬁ) varies from 300
to ~1800 K during a time interval of 0.26s; TS varies at

twice the RF frequency because the ions absorb RF power

during both the positive and negative phase of the signal.

tially from a Maxwellian (atomic ions) or MaxweHlBoltzmann

(molecular ions) distribution in the latter experiments.
Further, we have provided differential equations for the

position- and time-dependent moments of ion velocity and

Combining the data shown in Figures 2 and 3 with the three €Nergy, which are necessary to convert the actual experimental
models for the reaction cross-section produces the plot for the Parameters to the corresponding elevated temperature. The

time-dependent reaction rate coefficients in Figure 4 (note the

logarithmic axis for the rate coefficients). There is a much larger
variation ink? over time wherQ* is variable than when it is

constant due to the large variation Tﬁﬁ) that occurs in the
trap.

differential equations of Section 2 can be applied to circum-
stances requiring either two-temperature or multitemperature
theory for atomic species. In the case of molecular ions and
neutrals, the corresponding differential equations obtained in
Section 3 from the spherical-basis and Cartesian-basis theories
also enable determination of the ion internal temperature.

As afinal note about reaction rate coefficients, the ion number Furthermore, the expressions in both sections allow for mixtures

density in a trap also shows a strong dependence upon timeof neutral gases in which more than one component is reactive.
and position. The results in Figure 4 must then be convoluted We have shown that it is not necessary to determine the ion
with the results obtained previoushin order to determine the  velocity distribution function in order to establish high-
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temperature thermal rate coefficients. Nevertheless, explicit (3) Allbritton, D.L.In iinetics of lon-Molecule Reactiongusloos,
expressions are provided herein for position- and time-dependent”- Ed.; Plenum: New York, 1979, pp 13942

. P . . p . P . p (10) Heimerl, J. M.; Johnsen, R.; Biondi, M. A. Chem. Phys1969
ion velocity distributions under all the aforementioned circum- g 547

stances and in first approximation. The expressions require only  (11) Villinger, H.; Futrell, J. H.; Saxer, A.; Richter, R.; Lindinger, W.
knowledge of the average ion velocity and temperature (equiva- J. Chem. Phys1984 80, 2543.

lently energy), which can be obtained as noted above from the ~(12) Smith, D.; Spanel, RViass Spectrom. Re2005 24, 661.

solutions to the differential equations for the corresponding Phg,ls‘?’igzzhiin;%g‘;' C.; Ferguson, E. E.; Schmeltekopf, Al IChem.

moments. It also should b_e noted that,_ in principle, our  (14) Bierbaum, V. M., InThe Encyclopedia of Mass Spectrometry
expressions enable the reaction cross-section to be ascertaineérmentrout, P. B, Ed.; Elsevier: Amsterdam, 2003; Vol. 1, pp-269.

from the measured rate coefficients by inverting the integral (15 Viggiano, A. A, InThe Encyclopedia of Mass Spectrometry
L y 9 9 Armentrout, P. B., Ed.; Elsevier: Amsterdam, 2003; Vol. 1, pp-1208.
that relates the two quantities.

(16) Viehland, L. A.; Mason, E. AJ. Chem. Physl977, 66, 422.
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